
Plexe Version 1.1 Documentation

Michele Segata (segata@ccs-labs.org)

August 21, 2014

1

Contents

1 Introduction 3

2 Downloading and Building 3
2.1 Building SUMO . 3
2.2 Building Plexe Veins . 3

3 Running the Example Experiments 3

4 Implemented Controllers 4

5 Changes to the Original Simulator 5
5.1 Changes to SUMO . 5
5.2 Changes to Veins . 7

6 Extending the Simulator 7

7 Installing Needed Software 7
7.1 Install OMNeT++ . 7
7.2 Install R . 8

8 Known Issues 9

9 For the Impatient 10
9.1 Linux . 10
9.2 Mac OS X . 11

A Listings 12

2

1 Introduction

Plexe (PLatooning EXtension for vEins) has been devel-
oped to enable the study of platooning systems both from a
networking and a road traffic perspective. The purpose of
this framework is to provide a tool to researchers which
enables a detailed simulation of wireless communication
among the vehicles (in particular IEEE 802.11p-based com-
munication), together with realistic mobility. To this aim,
Plexe has been built upon Veins [4]1 which couples the
OMNeT++2 network simulator with the SUMO3 road traf-
fic simulator. The aim of this article is to document the
simulator, in particular describing

1. Where to download the simulator and how to compile
it;

2. How to run the basic example scenario shipped with
the simulator;

3. How the original Veins has been extended. This last
step is particularly important in order to develop new
scenarios and/or network protocols to be studied and
evaluated;

4. How to extend the simulator to implement a new, user-
defined, controller.

In here we assume that the reader is familiar with the simu-
lation framework Veins, and thus with the basic concepts on
network simulation in OMNeT++. It is thus assumed that
the user has already installed OMNeT++. If OMNeT++
is not installed, please refer to Section 7.1 or Section 9.
Throughout this documentation, the OMNeT++ version
used is 4.4.1. Moreover, we also assume that all source tar-
balls or git folders are placed in the home directory, under
the src folder (∼/src). The simulator requires build tools
and libraries to be built (e.g., g++). If you are building the
simulator in a freshly installed system, you might want to
have a look at Section 9, but be sure to read the documen-
tation before starting to use it.

2 Downloading and Building

Plexe source code can be either downloaded in a tar.bz2

archive, or via git through the public repository. To
obtain the archive please visit the download page4. In
there you will find two files, plexe-veins-1.1.tar.bz2 and
plexe-sumo-1.1.tar.bz2, containing a modified version of
Veins and SUMO respectively. Download, place, and ex-
tract them in source folder by typing in your terminal

cd
cd src
tar xjf plexe-veins-1.1.tar.bz2
tar xjf plexe-sumo-1.1.tar.bz2

To download the source code via git instead, clone the
github repositories with

cd
cd src
git clone https://github.com/michele.segata/plexe-veins.git
git clone https://github.com/michele.segata/plexe-sumo.git

and checkout the plexe-1.1 branches.

1http://veins.car2x.org
2http://www.omnetpp.org
3http://www.sumo-sim.org
4http://plexe.car2x.org/download

The next step is to compile the two sub-parts of the sim-
ulator.

2.1 Building SUMO

The procedure is similar for both Linux and Mac OS sys-
tems, but with some small differences in the commands.
SUMO depends on some third party libraries which can be
installed on a Linux machine with

sudo apt-get install libgdal-dev libproj-dev \
libxerces-c-dev libfox-1.6-dev libtool \
autoconf

After installing the dependencies, SUMO can be config-
ured with

cd ~/src/plexe-sumo
make -f Makefile.cvs
./configure

On Mac OS X, third party libraries can be installed via
MacPorts5 by typing

sudo port install xercesc proj gdal fox

The configuration command is slightly different on Mac
OS X, as you need to tell the script that the libraries are
located in the MacPorts folder (usually /opt/local):

export CPPFLAGS="$CPPFLAGS -I/opt/local/include"
export LDFLAGS="$LDFLAGS -L/opt/local/lib \

-framework GLUT -framework OpenGL"
make -f Makefile.cvs
./configure --with-fox=/opt/local \

--with-proj-gdal=/opt/local \
--with-xerces=/opt/local

On both systems, SUMO can then be built by simply
typing make on the command line. The final step is to
add the SUMO bin directory to your PATH. Add to your
.bash_rc (or .profile in OS X)

export PATH=$PATH:$HOME/src/plexe-sumo/bin

Now you should be able to run SUMO by typing either
sumo or sumo-gui for the command line and the GUI version
respectively.

2.2 Building Plexe Veins

Building Plexe Veins is the simplest step. Just type the
following on the command line

cd ~/src/plexe-veins
make -f makemakefiles MODE=release
make MODE=release

3 Running the Example Experiments

Plexe includes a sample scenario which is located in

cd ~/src/plexe-veins/examples/sinPlatoon

The example reproduces a platoon of eight cars travel-
ing for two minutes on a stretch of a freeway. The leader
is driving with an average speed of 100 km/h, oscillating

5http://www.macports.org

3

http://veins.car2x.org
http://www.omnetpp.org
http://www.sumo-sim.org
http://plexe.car2x.org/download
http://www.macports.org

24

26

28

30

24

26

28

30

24

26

28

30

A
C

C
 (0.3s)

A
C

C
 (1.2s)

C
A

C
C

80 85 90 95 100
time

sp
ee

d

factor(nodeId)
0
1
2
3
4
5
6
7

(a) Speed in time

12
16
20
24

25

30

35

10

20

AC
C

 (0.3s)
AC

C
 (1.2s)

C
AC

C

80 85 90 95 100
time

di
st

an
ce

factor(nodeId)
1
2
3
4
5
6
7

(b) Distance in time

Figure 1: Plots of speeds and distances as function of time for different controllers configurations obtained with the
simulator.

in a sinusoidal fashion for demonstration purposes. There
are three sub-scenarios, each of which uses a different au-
tomated controller setup.

In the first one, all cars are controlled by an Adap-
tive Cruise Control (ACC) [3, Chapter 6] which headway
time T has been set to 0.3 s. In this setup the platoon is
string-unstable, because the stability condition T ≥ 2τ [3,
Equation (6.26)], where τ is the actuation lag in seconds,
does not hold. τ is by default set to 0.5 s. In the sec-
ond sub-scenario, cars are still controlled by an ACC, but
this time in a string-stable manner. The ACC headway
time T is indeed set to 1.2 s. Finally, in the third scenario
cars are controlled by a Cooperative Adaptive Cruise Con-
trol (CACC) [3, Chapter 7]. Each car is receiving speed and
acceleration of the first car and of the car immediately in
front through wireless communication, in particular using
IEEE 802.11p. Cars are maintaining a fixed inter-vehicle
gap of 5 m, independently of the current speed.

Before running the experiments, the sumo-launchd script
must be started. This script waits for Veins simulations to
start and automatically launches SUMO for you. To start
it, go on your terminal and type

cd ~/src/plexe-veins
./sumo-launchd.py -c sumo-gui

The -c switch tells the script which SUMO command
to launch, so use sumo-gui for the graphical version, and
sumo for the command line version. There are some other
options, for example to daemonize the script. Use -h to
access the help.

To now start the simulation, open a new terminal and
type

cd ~/src/plexe-veins/examples/sinPlatoon
./run -u Cmdenv -f omnetpp.ini -c Sinusoidal -r <run>

For the run command, -u Cmdenv tells to use the
OMNeT++ command line environment, so the graphical
user interface will not be shown, -f omnetpp.ini indi-
cates which OMNeT++ configuration file should be used,
-c Sinusoidal the simulation configuration within the
omnetpp.ini file, and -r <run> is the number of the sim-
ulation to be run. The run number can be either 0, 1, or
2, and each value refers to one of the three sub-scenarios
previously described.

The SUMO graphical user interface should pop up, and
the simulation should be paused at time 0.00 s. You should

see a stretch of an empty freeway. Zoom in at the beginning
of the highway on the left side, and then press the play
button in SUMO. Cars will now be inserted in the highway
one after the other, and they will start to make a platoon.
If the simulation is too fast, change the delay time, which
will add a delay between each simulation step. You can
also right-click the first car and choose Start tracking to
have SUMO continuously track the leader.

All three simulations run for 120 s (simulation time). The
actual running time should be around one minute, depend-
ing on the performance of your machine. When all three
simulations are completed, you will find the output files
with some statistics in the results folder. The provided ex-
ample also includes an R script to plot distances and speeds
of the cars for the three scenarios. To use it, you will need
to have the R statistical framework installed together with
the omnetpp and ggplot2 packages. If you do not have R

with all needed packages installed, please see Section 7.2.
Otherwise, just type the following to generate two plots

cd ~/src/plexe-veins/examples/sinPlatoon/analysis
Rscript plot.R

When the script is completed, you should find speed.pdf

and distance.pdf in the analysis folder (Figures 1a
and 1b). Figure 1a shows how the speeds of the vehicles os-
cillate in time. For the first scenario, the string-instability
is evident. In the second scenario, the oscillations are atten-
uated along the platoon, due to the string-stability condi-
tions and the large gaps. In the scenario with CACC, every
car in the platoon perfectly reproduces what the leader is
doing.

Another way to compare the systems is to look at the
distances between the cars in time (Figure 1b). In the first
scenario, distances do not stabilize; they actually get bigger
and bigger. In the second scenario the platoon is string-
stable, and this can be clearly seen by looking at how the
distance oscillation is attenuated moving towards the tail of
the platoon. Such distance, however, is in the order of 33 m,
i.e., time headway multiplied by the platoon speed (T · v).
When considering CACC instead, all cars maintain a fixed
distance of 5 m and oscillations are barely noticeable.

4 Implemented Controllers

The standard Plexe version implements three controllers,
namely a Cruise Control (CC), an ACC, and a CACC. All
controllers are taken from the book by Rajamani [3], but

4

it is possible to extend the simulator and include different
models (see Section 6).

The CC [3, Chapter 5], if the automated controllers are
activated, drives the car when no vehicle in front is detected
by the radar (i.e., for a distance higher than 250 m). The
control law is defined as

ẍdes = −kp (ẋ− ẋdes) − η (1)

where ẍdes is the acceleration to be applied, ẋ is the current
speed, ẋdes is the desired speed, x the current position, and
xdes the position of a fictitious vehicle in front travelling at
the desired speed. kp and is the gain of the proportional
part of the controller, while η is a random disturbance tak-
ing into account imprecisions of the actuator and of the
speed measure (default set to 0). By default, kp is set to
1. Notice that in reality, the output of the controller is not
the acceleration to be applied ẍdes, but an input u which
should then be passed to vehicle’s driveline, and then be
“transformed” into an actual acceleration. Since this is a
simulated system, we directly map the input u to ẍdes.

The CC does consider possible obstacles in front, so if
the driver does not deactivate it when approaching a slower
vehicle in front, the car would collide with the one in front.
The ACC makes use of a radar to detect vehicles in front
and automatically slow down the car whenever needed. The
control law of the ACC is defined as [3, Chapter 6]

ẍi des = − 1

T
(ε̇i + λδi) (2)

δi = xi − xi−1 + li−1 + T ẋi (3)

ε̇i = ẋi − ẋi−1 (4)

where T is the time headway in seconds, ε̇i is the relative
speed between own car and the vehicle in front, and δi
is the distance error, i.e., the difference between the actual
distance (xi−xi−1+li−1) and the desired distance (T ẋi). As
you can notice, the desired distance is dependent on speed.
In particular it grows proportionally with speed, and for
stability reasons the time headway T cannot be arbitrarily
small, and needs to be greater than 1 s (please see [3] for
further details). λ is a design parameter which must be
strictly greater than 0, and it is set to 0.1 by default.

When the ACC is selected, the interaction between CC
and ACC is implemented as

ẍdes = min(ẍCC, ẍACC) (5)

Basically, if the CC is mandating to accelerate to reach the
desired speed, but the ACC is mandating to slow down be-
cause of a vehicle in front, the car follows the instructions
of the ACC. Conversely, if the ACC is mandating to accel-
erate to follow the car in front, but the car has reached its
desired speed, the CC will make the car to “detach” from
the one in front. Notice that this might not be the best
strategy to implement. A more appropriate way to switch
between CC and ACC is to use transitional controller de-
rived from range – range rate diagrams [3, Section 6.7.2].
This can be easily implemented in the simulator, but for
the sake of simplicity we choose to use this straightforward
switching mechanism.

The CACC controller we consider [3, Chapter 7] uses
wireless communication to improve performance. In par-
ticular, each vehicle feeds acceleration and speed of leader
and car directly in front in the controller in order to per-
form close car following. This communication pattern is not
the only possible one, see for example the work by Ploeg et
al. [2]. We choose this one because it implements a constant

spacing policy, i.e., it is able to maintain a fixed distance
which is independent from platoon’s speed. The control
law of the i-th vehicle in the platoon is defined as

ẍi des = α1ẍi−1 +α2ẍ0 +α3ε̇i +α4 (ẋi − ẋ0) +α5εi (6)

where

εi = xi − xi−1 + li−1 + gapdes (7)

ε̇i = ẋi − ẋi−1. (8)

Here, ẍ0 and ẋ0 are the acceleration and speed of the leader
respectively, while ẍi−1 is the acceleration of the front ve-
hicle. Notice that now the distance error term εi includes
a desired distance gapdes which is constant, and it is ex-
pressed in meters (5 m by default).

The αi parameters in Equation (6) are defined as

α1 = 1 − C1; α2 = C1; α5 = −ω2
n (9)

α3 = −
(

2ξ − C1

(
ξ +

√
ξ2 − 1

))
ωn (10)

α4 = −C1

(
ξ +

√
ξ2 − 1

)
ωn. (11)

C1 is a weighting factor between the accelerations of the
leader and the preceding vehicle, which we set to 0.5, ξ is
the damping ratio, set to 1, and ωn is the bandwidth of
the controller, set to 0.2 Hz as in [1]. The interaction of the
CACC with the CC is performed depending on the distance.
If a vehicle is farther than 20 m from the front one, the pol-
icy is the same as for ACC: ẍdes = min(ẍCC, ẍCACC), oth-
erwise ẍdes = ẍCACC. In this way it is possible to have two
different maximum accelerations, amax,CC for the CC (lim-
ited for comfort reasons) and the absolute maximum and
minimum amax and amin representing the vehicle’s limit.

The desired acceleration computed by each of the con-
trollers cannot be applied immediately, as there will be ac-
tuation lags connected to driveline dynamics. In the sim-
ulator, the actuation is modeled through a first order lag
(first order low-pass filter), which means that the actual
acceleration applied to the car is computed as

ẍi[n] = β · ẍi des[n] + (1 − β) · ẍi[n− 1] (12)

β =
∆t

τ + ∆t
. (13)

The acceleration at simulation step n is computed based on
the desired acceleration (computed by the controller) and
the acceleration in the previous simulation step. Here, τ is
the time constant, i.e., the actuation lag which is set to 0.5 s
by default, while ∆t is the simulation step size in seconds.

5 Changes to the Original Simulator

This section will describe how the original simulators (both
Veins and SUMO) have been extended in order to obtain
Plexe. This will help you in understanding the structure
of the simulator, and in extending it to fit your purposes.

5.1 Changes to SUMO

The main changes has been made to SUMO, in par-
ticular by introducing a new car following model which
implements the controllers described in Section 4. This
can be found in the files MSCFModel_CC.{h,cpp} in
plexe-sumo/src/microsim/cfmodels/. In here we will de-
scribe the main concepts behind the implementation, and
not the meaning of each line of code. The code itself

5

Listing 1: Example

SUMOReal
MSCFModel_CC::followSpeed(const MSVehicle* const veh, SUMOReal speed, SUMOReal gap2pred, SUMOReal predSpeed,

SUMOReal predMaxDecel) const {

[...]

if (vars->activeController != MSCFModel_CC::DRIVER)
return _v(veh, gap2pred, speed, predSpeed, desiredSpeed(veh), MSCFModel_CC::FOLLOW_SPEED);

else
return myHumanDriver->followSpeed(veh, speed, gap2pred, predSpeed, predMaxDecel);

}

Listing 2: ACC source code

SUMOReal
MSCFModel_CC::_acc(const MSVehicle *veh, SUMOReal egoSpeed, SUMOReal predSpeed, SUMOReal gap2pred,

SUMOReal headwayTime) const {

//Eq. 6.18 of the Rajamani book
return fmin(myAccel, fmax(-myDecel, -1.0 / headwayTime *

(egoSpeed - predSpeed + myLambda * (-gap2pred + headwayTime * egoSpeed))));

}

is pretty well documented, so understanding the concepts
should suffice for basic usage and extension.

The main idea of the new car following model is to in-
clude both a human behavioral model and the automated
controllers. This way the cars in the simulator can both
mimic a human, for example for entering or leaving the free-
way, and use automated systems when requested. So far the
employed human model is Krauss, which is the default one
in SUMO. If the car is driven by a human, then the func-
tion of the Krauss mobility model are invoked. Otherwise,
the methods defined in MSCFModel_CC.cpp are used. As an
example, in Listing 1 the followSpeed function checks if
the user has activated an automated controller. If so, the
MSCFModel_CC::_v function is invoked, otherwise the model
invokes the followSpeed method of the human behavioral
model.

The mobility model implements the controllers described
in Section 4, and permits to configure and enable them
through the TraCI interface. They are implemented in the
_cc(), _acc(), and _cacc() methods, and are invoked by
_v() depending on which one is enabled. They compute
the acceleration to be applied at the next simulation step,
clipped between a maximum possible acceleration and de-
celeration, without considering actuation lags. Listing 2
shows the source code for ACC acceleration.

Within the _v() method, the acceleration (ẍdes in Sec-
tion 4) is filtered by the _actuator() function which needs
the acceleration computed at the previous time step. This
is stored into the MSCFModel_CC::VehicleVariables class.
We cannot use a class variable because SUMO instanti-
ates only one mobility model per vehicle type, and the
VehicleVariables class is meant for keeping track of values
which might be different from vehicle to vehicle. Given the
filtered acceleration, the model finally computes the speed
the car will have at the next time step.

The final step of _v() is to store computed information
within the VehicleVariables class for other usages. Before
storing data, the model checks whether data should actu-
ally be stored or not. The _v() method is indeed invoked
more than once per timestep and car. As an example, the
lane changing logic invokes this method to understand if
the car could get a gain by changing lane. In this case,

the function computes the speed the car could reach by
changing lane, but the value is used only to understand
if the situation on the other lane is better and we must
not change the status of the vehicle. The second condi-
tion checks who invoked _v(). SUMO uses followSpeed()
to compute the speed to apply to stay behind a vehicle,
freeSpeed() to compute the speed if the road in front is
free, and stopSpeed() to compute the speed to use when
approaching a non moving obstacle such as a red traffic
light. The latter case is simply ignored (see the comments
in stopSpeed() for a really detailed explanation). The
followSpeed() and freeSpeed() methods might both be
called within the same timestep. For this reason, we need
to keep track of speed values computed by both methods,
and then return the appropriate one to SUMO when needed
(i.e., in the moveHelper()) method. To know which speed
value to return to SUMO in moveHelper(), we save the
timestep followSpeed() has been invoked at. Since SUMO
does not invoke followSpeed() if no vehicle is in front, we
can use this information to decide the correct speed value
to return.

As briefly mentioned, another fundamental component
of the model is the VehicleVariables class. It contains
all values that may differ from vehicle to vehicle. As an
example, if you consider the ACC described in Section 4, we
need to store desired speed, or time headway. Some values
are controller related parameters, some others are needed
to ensure proper operation, like controllerFollowSpeed

and controllerFreeSpeed, and some are used to provide
information to Veins when requested. As an example, radar
related information is stored in radarFrontDistance and
radarFrontSpeed.

The final crucial parts of the model are the get and
setGenericInformation() methods. These are the main
access points to the model via the TraCI interface. In prin-
ciple, to send or to retrieve data from a model via TraCI,
you would need to change several SUMO and Veins core
files, which include TraCIConstants.h (on both Veins and
SUMO), TraCIServerAPI_Vehicle.cpp (on SUMO), and
TraCIScenarioManager.{h,cc} and TraCIMobility.h (on
Veins). In TraCIConstants.h you need to define a new
constant which identifies your new TraCI command, while

6

the other files need to be modified to handle it. The result
for a model like MSCFModel_CC, which has a huge amount
of interactions with Veins, is that the amount of constants
defined in the file grows indefinitely. Moreover, it is not
desirable to change core files when unneeded.

For such reasons, we define these message passing mecha-
nisms which are able to deal with generic data structures us-
ing pointers. The constants are defined within CC_Const.h

(on both SUMO and Veins). When adding new getters or
setters, it is sufficient to add a new constant in CC_Const.h

and handle it in either getGenericInformation() or
setGenericInformation().

5.2 Changes to Veins

Veins changes are minor. The main change is in the
TraCI functionalities, which have been extended in or-
der to be able to send to and received data from the
SUMO model. Then we provide a base set of files which
actually handle the simulation, from a network and ve-
hicle dynamics point of view. The files are located in
src/modules/application/platooning. In there you find:

• CC_Const.h: this is a copy of the file described in the
previous subsection;

• UnicastProtocol.{ned,h,cc}: since Veins IEEE
802.11p model still does not implement unicast com-
munications, this can be used for acknowledged com-
munication when needed. Notice that this is a kind
of application-layer unicast, it does not respect MAC
layer timings;

• messages: in this folder are defined all the .msg files
which might be needed;

• protocols: in here are implemented communication
protocols, i.e., the ones that are responsible for bea-
con dissemination to provide data to the CACC.
The folder contains BaseProtocol which takes care
of some of the duties, such as loading parame-
ters from the omnetpp.ini file, logging output data,
and so on. This class must be extended to ac-
tually implement the beaconing logic. This pat-
tern permits to have only the protocol logic within
classes that extend BaseProtocol. For example
SimplePlatooningBeaconing implements static bea-
coning, and the resulting code is straightforward;

• apps: this folder is meant to include files which imple-
ment application layer logic. Notice that when refer-
ring to application layer we mean the logic that tells
vehicles what they should do. For example, if you want
to tell a car to move to a specific lane and use the ACC
with a desired speed of 130 km/h, then this must be
done at the application layer. The design pattern is
the same as in the protocol layer. There is a BaseApp

which simply extracts data out of packets coming from
the protocol layer, and updates CACC data via TraCI
if such data is coming either from the leader or from the
car in front. Then SimplePlatooningApp implements
the actual logic, i.e., it tells the vehicles to stay on the
rightmost lane, to use the controller requested by the
user, and makes the leader accelerate and decelerate in
a sinusoidal fashion.

Notice that all these files are just examples. You can
build your own protocols and application layer dynamics
depending on your needs making use of the TraCI func-
tionalities provided by Plexe.

6 Extending the Simulator

In this section we briefly describe the steps that are required
in order to modify the simulator, in particular by adding
a new automated controller. We first define the controller
that we are going to implement. This is just a fictional
controller, there are no guarantees on stability, convergence
time, etc. We assume to take into account data from front
vehicle only. The control law is defined as

ẍi des = kd (xi−1 − xi − li−1 − 25 m) + ks (ẋi−1 − ẋi) (14)

The controller in Equation (14) aims at maintaining an
inter-vehicle distance of 25 m and the same speed of the
vehicle in front, and has two design gains kd and ks.

To implement the controller, we start from SUMO. What
we want to do here is to:

1. Implement and make available to the user Equa-
tion (14) as a new controller;

2. Be able to specify kd and ks via TraCI.

First, we modify CC_Const.h by adding our controller to
the ACTIVE_CONTROLLER enum, and by adding two con-
stants for setting the gains. We call our new con-
troller as MYCC (Listing 3). We then need to modify
MSCFModel_CC.h::VehicleVariables and include the new
parameters (Listing 4), and edit setGenericInformation

to handle their configuration via TraCI (Listing 5).
The final step for SUMO is to implement the control

law. We thus define the function _mycc() (together with
its prototype in MSCFModel_CC.h) and we invoke it in _v()

(Listing 6).
We now need to change Veins to make use of

the new controller. We modify the provided exam-
ple located in examples/sinPlatoon. First, we copy
CC_Const.h from the SUMO source code and place it
in src/modules/application/platooning. We then edit
BaseApp.ned and SimplePlatooningApp.ned to add the
controller parameters (Listing 7). To get the parameters,
we modify BaseApp.{h,cc} adding class variables, loading
them using the OMNeT++ par() function, and passing
them to SUMO via TraCI in the initialize() method
(Listing 8).

The final step before running the simulation is to
change the omnetpp.ini file and SimplePlatooningApp.cc

to make the simulation use the new controller (Listings 9
and 10). Now the simulation is ready to be started. We
have 4 runs, 2 with ACC, one with CACC, and a new one
using MYCC. Start the simulation with

./run -u Cmdenv -f omnetpp.ini -c Sinusoidal -r 3

and watch the new controller in action.
To compare the new controller with the ones pro-

vided by the simulator, we change plot.R located in
examples/sinPlatoon/analysis (Listing 11). Figure 2
shows the resulting plot, highlighting the instability of
MYCC.

7 Installing Needed Software

7.1 Install OMNeT++

OMNeT++ is the core part of the network simulation
framework provided by Veins. In here, we consider ver-
sion 4.4.1. To build OMNeT you will first need to install
some libraries. On a Linux system, type

7

24

26

28

30

24

26

28

30

24

26

28

30

24

26

28

30

A
C

C
 (0.3s)

A
C

C
 (1.2s)

C
A

C
C

M
Y

C
C

80 85 90 95 100
time

sp
ee

d

factor(nodeId)

0

1

2

3

4

5

6

7

(a) Speed in time

12

16

20

24

25

30

35

10

20

30

50

100

A
C

C
 (0.3s)

A
C

C
 (1.2s)

C
A

C
C

M
Y

C
C

80 85 90 95 100
time

di
st

an
ce

factor(nodeId)

1

2

3

4

5

6

7

(b) Distance in time

Figure 2: Plots of speeds and distances as function of time for different controllers configurations obtained with the
simulator, including MYCC.

sudo apt-get install bison flex tk8.5-dev

while on Mac OS X you can install them with

sudo port install bison flex tk

Then you will need to add the OMNeT++ bin folder to
your path, by adding to your .bash_rc or .profile

export PATH=$PATH:$HOME/src/omnetpp-4.4.1/bin

After downloading OMNeT (source plus IDE) from the
official website in your home folder, extract and compile it
with

cd
tar xzf omnetpp-4.4.1-src.tgz
cd omnetpp-4.4.1
./configure
make

7.2 Install R

R6 is a powerful statistical framework which can be used to
parse, process, and plot data obtained through OMNeT++
simulations. The plots in Figures 1a and 1b have been
obtained with a few lines of code. To install R, open a
terminal and type

sudo apt-get install r-base

on a Linux machine or

sudo port install R

on Mac OS X. You will then need to install OMNeT++
package for R, ggplot2, and reshape. To install ggplot2
and reshape, open the R console and simply type

install.packages(c('ggplot2', 'reshape'))

Once installation is complete, exit the console by hitting
CTRL+D twice. Download the OMNeT++ R package7

and then install it by typing

6http://www.r-project.org
7https://github.com/downloads/omnetpp/omnetpp-resultfiles/

omnetpp_0.2-1.tar.gz

R CMD INSTALL /path/to/download/omnetpp_0.2-1.tar.gz

on your terminal. Your R environment should now be
correctly set up.

References

[1] Pedro Fernandes. Platooning of IVC-Enabled Au-
tonomous Vehicles: Information and Positioning Man-
agement Algorithms, for High Traffic Capacity and Ur-
ban Mobility Improvement. Phd thesis, University of
Coimbra, Portugal, April 2013.

[2] J. Ploeg, B.T.M. Scheepers, E. van Nunen, N. van de
Wouw, and H. Nijmeijer. Design and Experimental
Evaluation of Cooperative Adaptive Cruise Control. In
IEEE International Conference on Intelligent Trans-
portation Systems (ITSC 2011), pages 260–265, Wash-
ington, DC, October 2011. IEEE.

[3] R. Rajamani. Vehicle Dynamics and Control. Springer,
second edition, 2012.

[4] Christoph Sommer, Reinhard German, and Falko
Dressler. Bidirectionally Coupled Network and Road
Traffic Simulation for Improved IVC Analysis. IEEE
Transactions on Mobile Computing, 10(1):3–15, 2011.

8

http://www.r-project.org
https://github.com/downloads/omnetpp/omnetpp-resultfiles/omnetpp_0.2-1.tar.gz
https://github.com/downloads/omnetpp/omnetpp-resultfiles/omnetpp_0.2-1.tar.gz

8 Known Issues

Q: SUMO linking fails with undefined reference to symbol
glGetBooleanv, pthread mutex setattr, or gluTessProperty

A: This issue has been found when compiling SUMO
on Ubuntu 14.04. To solve the problem, use the following
configuration command before compiling:

LIBS="-pthread -lGLU -lGL" ./configure

Q: OMNeT++ compilation fails with error ”abspath.cc
error: ’getcwd’ was not declared in this scope”

A: There is a missing include directive in abspath.cc.
Fix this by adding the directive in abspath.cc

#include <unistd.h>

Q: ggplot2 is not available for a particular R version
A: Installation might fail if you own an old version of

R. For example, if you are using Ubuntu 12.04 LTS, the R
version you will be installing from apt-get will be 2.14.1,
and some required dependencies are not available anymore.
To overcome the problem, you can install the latest version
of R with

sudo add-apt-repository ppa:marutter/rdev
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install r-base

Q: OMNeT++ compilation fails with an include or a
linking error on Mac OS X for libtk

A: This can happen if you installed required libraries
using MacPorts. To let the compiler and the linker know
about the locations of MacPorts installed libs, configure
OMNeT++ in the following way

CFLAGS='-I/opt/X11/include -I/opt/local/include'\
LDFLAGS='-L/opt/X11/lib -L/opt/local/lib'\
./configure

9

9 For the Impatient

9.1 Linux

This section contains a list of commands that you can copy-paste on your terminal to download, configure, and build
the simulator on a brand new system, for example a fresh Ubuntu installation. Before using the commands, be sure to
change your PATH in your .bashrc file, and then source it:

export PATH=$PATH:~/src/omnetpp-4.4.1/bin
export PATH=$PATH:~/src/plexe-sumo/bin
export TCL_LIBRARY=/usr/share/tcltk/tcl8.5

cd
source .bashrc
sudo apt-get install build-essential bison flex zlib1g-dev tk8.5-dev openjdk-6-jre autoconf libtool libproj-dev libgdal-dev \

libfox-1.6-dev libxerces-c-dev r-base

mkdir -p src
wget http://omnetpp.org/download/release/omnetpp-4.4.1-src.tgz
tar xf omnetpp-4.4.1-src.tgz
cd omnetpp-4.4.1
./configure
make

cd ..
wget http://plexe.car2x.org/download/plexe-veins.tar.bz2
tar xf plexe-veins.tar.bz2
cd plexe-veins
make -f makemakefiles MODE=release
make MODE=release

cd ..
wget http://plexe.car2x.org/download/plexe-sumo.tar.bz2
tar xf plexe-sumo.tar.bz2
cd plexe-sumo
make -f Makefile.cvs
LIBS="-pthread -lGLU -lGL" ./configure
make

cd
wget https://github.com/downloads/omnetpp/omnetpp-resultfiles/omnetpp_0.2-1.tar.gz
mkdir -p R
echo ".libPaths(c(.libPaths(), '$HOME/R'))" > $HOME/.Rprofile
R -e "install.packages('ggplot2', lib='$HOME/R', repos='http://mirrors.softliste.de/cran/')"
R -e "install.packages('reshape', lib='$HOME/R', repos='http://mirrors.softliste.de/cran/')"
R CMD INSTALL omnetpp_0.2-1.tar.gz --lib=$HOME/R

10

9.2 Mac OS X

On a Mac OS X system, you will need to install XCode (to get build tools like gcc) and MacPorts8 to install required
libraries and software. After installing these programs, edit your .profile file in you home directory and add

export PATH=$PATH:~/src/omnetpp-4.4.1/bin
export PATH=$PATH:~/src/plexe-sumo/bin

cd
source .profile
sudo port install bison flex zlib tk autoconf libtool proj gdal fox xercesc R wget

mkdir -p src
wget http://omnetpp.org/download/release/omnetpp-4.4.1-src.tgz
tar xf omnetpp-4.4.1-src.tgz
cd omnetpp-4.4.1
./configure
make

cd ..
wget http://plexe.car2x.org/download/plexe-veins.tar.bz2
tar xf plexe-veins.tar.bz2
cd plexe-veins
make -f makemakefiles MODE=release
make MODE=release

cd ..
wget http://plexe.car2x.org/download/plexe-sumo.tar.bz2
tar xf plexe-sumo.tar.bz2
cd plexe-sumo
export CPPFLAGS="$CPPFLAGS -I/opt/local/include"
export LDFLAGS="$LDFLAGS -L/opt/local/lib -framework GLUT -framework OpenGL"
make -f Makefile.cvs
./configure --with-fox=/opt/local --with-proj-gdal=/opt/local --with-xerces=/opt/local
make

cd
wget https://github.com/downloads/omnetpp/omnetpp-resultfiles/omnetpp_0.2-1.tar.gz
mkdir -p R
echo ".libPaths(c(.libPaths(), '$HOME/R'))" > $HOME/.Rprofile
R -e "install.packages('ggplot2', lib='$HOME/R', repos='http://mirrors.softliste.de/cran/')"
R -e "install.packages('reshape', lib='$HOME/R', repos='http://mirrors.softliste.de/cran/')"
R CMD INSTALL omnetpp_0.2-1.tar.gz --lib=$HOME/R

8http://www.macports.org

11

http://www.macports.org

A Listings

This section includes all the listings showing which part of the simulator needs to be modified in order to implement a
new controller, as done in Section 6.

Listing 3: Changes to CC Const.h

enum ACTIVE_CONTROLLER
{DRIVER = 0, ACC = 1, CACC = 2, FAKED_CACC = 3, MYCC = 4}

[...]

#define CC_SET_CACC_C1 0x06 //C1
#define CC_SET_ENGINE_TAU 0x07 //engine time constant

#define CC_SET_MYCC_KD 0x08 //k_d for new controller
#define CC_SET_MYCC_KS 0x09 //k_s for new controller

Listing 4: Changes to VehicleVariables

class VehicleVariables : public MSCFModel::VehicleVariables {
public:

VehicleVariables() : egoDataLastUpdate(0), egoSpeed(0), egoAcceleration(0), egoPreviousSpeed(0),
[...]
caccAlpha3(-1), caccAlpha4(-1), caccAlpha5(-1), engineAlpha(-1), engineOneMinusAlpha(-1),
myccKd(1), myccKs(1) {

[...]

/// @brief controller related parameters
double caccXi;
double caccOmegaN;
double caccC1;
double caccAlpha1, caccAlpha2, caccAlpha3, caccAlpha4, caccAlpha5;
double engineTau, engineAlpha, engineOneMinusAlpha;
/// @brief parameters for MYCC
double myccKd, myccKs;

};

Listing 5: Handling passage of parameters

[...]
case CC_SET_ENGINE_TAU: {

vars->engineTau = *(double*)content;
recomputeParameters(veh);
break;

}
case CC_SET_MYCC_KD: {

vars->myccKd = *(double*)content;
break;

}
case CC_SET_MYCC_KS: {

vars->myccKs = *(double*)content;
break;

}
default: {

break;
}

12

Listing 6: Implementation of mycc

SUMOReal
MSCFModel_CC::_v([...]) {

[...]
case Plexe::MYCC:

ccAcceleration = _cc(veh, egoSpeed, vars->ccDesiredSpeed);
caccAcceleration = _mycc(veh, egoSpeed, vars->frontSpeed, gap2pred);
controllerAcceleration = fmin(ccAcceleration, caccAcceleration);
break;

case Plexe::DRIVER:

std::cerr << "Switching to normal driver behavior still not implemented in MSCFModel_CC\n";
assert(false);
break;

[...]
}

[...]

SUMOReal
MSCFModel_CC::_mycc(const MSVehicle *veh, SUMOReal egoSpeed, SUMOReal predSpeed, SUMOReal gap2pred) const {

VehicleVariables* vars = (VehicleVariables*)veh->getCarFollowVariables();
return fmin(myAccel, fmax(-myDecel, vars->myccKd * (gap2pred - 25) + vars->myccKs * (predSpeed - egoSpeed)));

}

Listing 7: Changes to ned files

[...]
double caccC1;
double engineTau @unit("s");
double myccKd;
double myccKs;

Listing 8: Loading parameters from omnetpp.ini

void BaseApp::initialize(int stage) {

BaseApplLayer::initialize(stage);

if (stage == 0) {

//init class variables
[...]
engineTau = par("engineTau").doubleValue();
myccKd = par("myccKd").doubleValue();
myccKs = par("myccKs").doubleValue();

[...]
traci->commandSetGenericInformation(traci->getExternalId(), CC_SET_ENGINE_TAU, &engineTau, sizeof(double));
traci->commandSetGenericInformation(traci->getExternalId(), CC_SET_MYCC_KD, &myccKd, sizeof(double));
traci->commandSetGenericInformation(traci->getExternalId(), CC_SET_MYCC_KS, &myccKs, sizeof(double));

}

}

13

Listing 9: Using new controller in SimplePlatooningApp.cc

void SimplePlatooningApp::initialize(int stage) {

BaseApp::initialize(stage);

if (stage == 1) {

[...]
if (strcmp(strController, "ACC") == 0) {

controller = Plexe::ACC;
}
else if (strcmp(strController, "CACC") == 0) {

controller = Plexe::CACC;
}
else {

controller = Plexe::MYCC;
}
[...]

Listing 10: Changes to omnetpp.ini

#use ACC or CACC
**.dummycontroller=${controller=0,0,1,2}

.node[].appl.controller = ${sController = "ACC", "ACC", "CACC", "MYCC" ! controller}
#ACC time headway. note that time headway for CACC is ignored
**.dummyheadway=${headway=0.3,1.2,0.3,0.3!controller}s

.node[].appl.accHeadway = ${headway}s
[...]
#make the leader accelerate and decelerate with a sinusoidal trend. set to 0 for constant speed
.node[].appl.leaderOscillationFrequency = 0.2Hz
#set parameters for MYCC
.node[].appl.myccKd = 0.7
.node[].appl.myccKs = 1
[...]

Listing 11: Changes to plot.R

accCloseData <- prepare.vector('../results/Sinusoidal_0_0.3_0.vec')
accFarData <- prepare.vector('../results/Sinusoidal_0_1.2_0.vec')
caccData <- prepare.vector('../results/Sinusoidal_1_0.3_0.vec')
ccData <- prepare.vector('../results/Sinusoidal_2_0.3_0.vec')

#add a column to distinguish them before merging
accCloseData$controller <- "ACC (0.3s)"
accFarData$controller <- "ACC (1.2s)"
caccData$controller <- "CACC"
ccData$controller <- "MYCC"

#merge all data together
allData <- rbind(accCloseData, accFarData, caccData, ccData)

14

